Improvements for the Gen-7 Plug Tuning

Pedro A. Movilla Fernández (LBNL)

Simulation Group Meeting Feb. 22th, 2007

Overview

 Current GFLASH <u>parametrization</u> for the Plug has a discontinuity at p~20GeV/c where f6 tuning changes to old Gen-5 tuning.

- Fractional energy deposit: FEDP: $\sim 0.94 \rightarrow \sim 0.84$

(Gflash/GflashSim/gfinha.F)

- Relative sampling fractions: PBYMIP(1): $0.87 \rightarrow 1.82$

PBYMIP(2): $1.28 \rightarrow 3.20$

(Gflash/GflashSim/gfshow.F)

- Also scaling factors for tower 10/11 sampling fractions have a step.

 However, the effect of the above to <u>simulated E/p response</u> is not too drastic because of the opposite trends of the parameters. But these mutual cancellation is not perfect.

This talk: Proposal for a new parametrization:

- Ensures perfectly smooth transition f6 ® Gen-5.
- Provides (as a side effect) better agreement with data at 10-20GeV/c.

Current f6 Parametrization

p<20GeV/c: FEDP = $c_1+c_2*tanh(c_3*(log(p)-c_4))$ PEM = k_1 PHA = k_1

Updated f6 Parametrization

p<30GeV/c:

smoothing term

FEDP=
$$c_1+c_2*tanh(c_3*(log(p)-c_4))$$

- $\{c_5+c_6*tanh(c_7*(log(p)-c_8))\}$

$$PEM = d_1 + d_2 * tanh(d_3 * (log(p) - d_4))$$

PHA =
$$e_1 + e_2 * tanh(e_3 * (log(p) - e_4))$$

- FEDP: f6 unchanged at low p, smooth decrease to Gen-5 value starting at ~ 8GeV/c
- PHA, PEM sampling: connect f6 with Gen-5 plateau using tanh-function

Tower 10/11 Scaling Factors

Use tanh-function to connect f6 and Gen-5 plateaus.

E/p Continuity Test (1)

E/p response using <u>flat</u> FAKEEV spectrum from 0-50GeV/c.

- Continuous transition from f6 to Gen-5.
- Careful mutual adjustment of FEDP and relative sampling fractions necessary to avoid fluctuations (non-trivial task).
- Latest smoothing (red points) gives reasonably constant TOT/p response (~1-2%) in transition region between 10-30 GeV/c.

E/p Continuity Test (2)

- Above: Uncorrected 3x1 block responses of individual towers in Wall/Plug.
- Continuity of response in crack towers 10+11 after smoothing of scaling factors.
- Note that slope depends on particle spectrum and momentum resolution (decreasing track quality with rising tower numbers).

f6 vs. Data (Plug)

Better description of data at p>10GeV/c.

f6 vs. Data (Plug)

Better description of data at p>10GeV/c.

f6 vs. Data (Plug)

f6 vs. Data (**T10**)

Picture didn't change much.

f6 vs. Data (**T11**)

Conclusions

- Updated Plug and Crack parametrization has no discontinuity problem and provides better description of data.
- Smoothed f6 should replace the old f6 in view of Gen-7.
- Reduced excess of Gflash E/p response over data in the intermediate momentum region could help to reduce the discrepancies seen in di-jet balances. Revalidation would be useful.

Backup

f6 vs. Data (**T10**)

f6 vs. Data (**T11**)

